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Abstract
We study the effect of magnetic impurity on the entanglement in the three-site
Ising model with both periodic and open boundary conditions. We obtain
the analytic expressions for entanglement and show that the ground state and
excited states of the system possess remarkable entanglement properties. We
find that the entanglement between two specific spins for a given state depends
on the sites where the impurities are located. We also discuss a relation of our
results with some aspects of quantum phase transitions in the transverse Ising
model.

PACS numbers: 03.67.Mn, 03.65.Ud, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum entanglement plays a central role in quantum information and quantum computation.
It is an important resource for processing quantum information [1]. With quantum
entanglement, one can perform quantum teleportation [2], super-dense coding [3], quantum
cryptography [4], etc. Over the past years much effort has been put into studying the
entanglement in various quantum spin systems at finite temperature. The thermal entanglement
was introduced and analysed within the Ising model in a transverse field [5], the Heisenberg
XXX [6], XX [7] and XXZ models [8]. The enhanced thermal entanglement in an anisotropic
three-site Heisenberg XYZ chain was also observed [9]. The state of the system at thermal
equilibrium is represented by the density operator ρ(T ) = exp(−H/(kBT ))/Z, where
Z = tr[exp(−H/(kBT ))] is the partition function and kB is the Boltzmann constant. The
entanglement at the thermal equilibrium state is the thermal entanglement.
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Entanglement can play a crucial role in quantum phase transitions [10]. Osterloh et al
studied the scaling of entanglement close to the quantum phase transitions and showed that the
pairwise quantum entanglement between nearest neighbour sites and next nearest neighbour
sites of the ground state of XY spin chain displays a peak either near or at the critical point
of quantum phase transitions [11]. Similar results are also obtained and generalized in [12].
Vidal et al pointed out that entanglement of the ground state of XXZ and XY spin chains at
the critical point is analogous to that of entropy in conformal field theories [13]. Osenda et al
[14] studied the impurities entanglement in the quantum XY model. Some related work was
also done for various models [15–18]. Quantifying entanglement is a very interesting issue
in modern academic research. The strongly entangled systems exhibit complicated behaviour
which is difficult to quantify. The Ising model is very important in statistical mechanics and
condensed matter physics. Many materials, such as CsCoCl3, (NH4)2MnF5 and FeCl2Py2,
have this kind of exchanging interaction. The transverse Ising model is a wonderful example
to study the quantum phase transitions. In this paper, we study and quantify the entanglement
in the three-site Ising model with impurities and transverse fields.

The structure of this paper is as follows. In section 2, some measures of entanglement
are outlined. We study the entanglement in the Ising model with one impurity in section 3.
The two-impurity effect on the entanglement in the system is studied in section 4. In section 5,
some results of the transverse Ising model are given. In section 6, we discuss the entanglement
properties in the Ising model with two boundary impurities. In section 7, we discuss the system
with two neighbour impurities using the free boundary conditions. Section 8 concludes the
paper.

2. The measures of entanglement

Recall some measures of entanglement. Let ρ12 be the density matrix of two qubits and it can
denote either a pure or a mixed state. The concurrence [19] is defined as

C12 = max{λ1 − λ2 − λ3 − λ4, 0} (1)

where the quantities λi are the square roots of the eigenvalues of the operator R12 =
ρ12

(
σ

y

1 ⊗ σ
y

2

)
ρ∗

12

(
σ

y

1 ⊗ σ
y

2

)
in descending order. The eigenvalues of R12 are real and

non-negative even though R12 is not necessarily Hermitian. The values of the concurrence
monotonically increase and range from 0, for an unentangled state, to 1, for a maximally
entangled state, and can describe the degree of entanglement. In this method, the standard
basis, {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, must be used. Tangle [20] is also a measure of entanglement
and is defined only for pure states. Consider a multi-particle system where one of the
subsystems, denoted as j , is a qubit. The entanglement between the qubit j and the rest of the
qubits, denoted as j̄ , is defined as tangle,

Cjj̄ = 4Det ρj = 2
(
1 − tr ρ2

j

)
(2)

where ρj is the reduced density matrix of the qubit j , ρj = trj̄ |ψ〉〈ψ |, and trj̄ stands for tracing
over all qubits except the j th qubit. As usual for entanglement measures, the tangle ranges
from 0 (no entanglement) to 1, when two qubits are maximally entangled. With concurrence
and tangle, the residual entanglement three-qubit pure state is defined as Cijk = Ciī −C2

ij −C2
ik .

The global entanglement [21] of the multi-particle system is defined as

Q(|ψ〉) = 2

(
1 − 1

n

n∑
k=1

tr
(
ρ2

k

))
(3)

which means that the multi-particle entanglement is an average over the entanglement of each
qubit with the rest of the system. The measure Q has nice properties: (i) 0 � Q � 1. Q = 0 if
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and only if |ψ〉 is a product state and Q = 1 for maximally entangled states, (ii) Q is invariant
under local unitaries, as a good measure should be.

3. Entanglement in the Ising model with one magnetic impurity

We first consider a three-site Ising model with a magnetic impurity on the third site,

H = −J
(
σx

1 σx
2 + σx

2 σx
3 + σx

3 σx
1

)
+ Bσz

3 (4)

where σα
i (α = x, z) are the Pauli matrices of the ith site, J is the exchanging interaction

constant and B is the magnetic impurity and is assumed larger than zero, which also means an
external magnetic field on the third site. We adopt periodic boundary conditions and therefore
the system is a three-qubit Ising ring with an external magnetic field on one of the sites.
In order to study pairwise entanglement, the first step is to obtain all the eigenvalues and
eigenstates of the Hamiltonian (4). By solving the time-independent Schrödinger equation,
we obtain the eigenvalues of the system

E1 = E5 = −J −
√

B2 + 4J 2 E2 = E6 = −J +
√

B2 + 4J 2

E3 = E7 = J + B E4 = E8 = J − B.
(5)

The corresponding eigenstates are

|ψi〉 = ki(|001〉 + bi |010〉 + bi |100〉 + |111〉) i = 1, 2

|ψ3〉 = (|001〉 − |111〉)/
√

2 |ψ4〉 = (|010〉 − |100〉)/
√

2

|ψj 〉 = kj (|110〉 + bj |011〉 + bj |101〉 + |000〉) j = 5, 6

|ψ7〉 = (|011〉 − |101〉)/
√

2 |ψ8〉 = (|000〉 − |110〉)/
√

2

(6)

where b1,2 = [B ± (B2 + 4J 2)1/2]/(2J ), b5,6 = [−B ± (B2 + 4J 2)1/2]/(2J ) and ki,j are the
normalized coefficients.

The ground state is the linear combination of states |ψ1〉 and |ψ5〉 if J > 0. The ground
state is twofold degenerate. The thermal ground state is a mixed state and has the probabilities
of one half occupying |ψ1〉 and one half occupying |ψ5〉. The pairwise entanglement at the
thermal ground state is C12 = C23 = C13 = 0. Let us consider two limit cases: (i) the
ground state is |ψ1〉 and (ii) the ground state is |ψ5〉. In case (i), the entanglement of pairs 1
and 2 is C12 = 2k2

1

∣∣1 − b2
1

∣∣ and the pairwise entanglement of both (1, 3) and (2, 3) is zero,
C13 = C23 = 0. We also have C11̄ = C22̄ = 1, which means that site 1 (or 2) is maximally
entangled with the subsystem consisting of sites 2 (or 1) and 3, and C33̄ = 16k4

1b
2
1. The

residual entanglement of the system is equal to the tangle between site 3 and the rest of the
other sites. One can prove C123 = C213 exactly, which means that C123 is independent of
permutations of sites and is a proper measure of entanglement. The global entanglement of
the whole system is Q(|ψ1〉) = (

2 + 16k4
1b

4
1

)/
3. The entanglement properties are clearly

shown in figure 1. In case (ii), one can obtain the results using the same methods. While
if J < 0, E4 and E8 are the lowest energies. The thermal ground state has the probabilities
of one half occupying |ψ4〉 and one half occupying |ψ8〉. The pairwise entanglement at the
thermal ground state is C12 = 1, C23 = C13 = 0. If the ground state is |ψ4〉, we have
C12 = 1, C23 = C13 = 0, C11̄ = C22̄ = 1, C33̄ = 0, C123 = 0 and Q(|ψ4〉) = 2/3. These
results are also valid for the case when the ground state is |ψ8〉.

We now derive the concurrence for any pair of systems at finite temperature. The
thermal entanglement between sites 1 and 3 is the same as that between sites 2 and 3
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Figure 1. The ground state entanglement in the Ising model with single impurity. Here J = 1.0.
The concurrence C12 increases with increasing magnitude of the magnetic impurity. The tangle,
residual entanglement and global entanglement are zero if B = 0 and reach their maxima
immediately if there exists infinitesimal magnetic impurity. Then, the tangles C11̄ and C22̄ remain
unchanged, while the residual and global entanglements decrease with increasing magnitude of
impurity.

due to the symmetry. The state at thermal equilibrium is described by the density matrix
ρ(T ) = ∑8

k=1 exp(−βEk)|ψk〉〈ψk|/Z, where β = 1/T and the Boltzmann constant is
set to 1. The partition function is Z = ∑8

i=1 exp(−βEi). The reduced density matrices
ρ12(T ) = tr3ρ(T ) and ρ13(T ) = tr2ρ(T ), where tri denotes the tracing over the ith site, take
the following form:

ρ12 = 1

Z




A D

B C

C B

D A


 ρ13 = 1

Z




Ã C̃

B̃ C̃

C̃ Ã

C̃ B̃


 .

The nonzero matrix elements of ρ12 are given by A = ∑
i k

2
i e−βEi + 0.5 e−βE3 + 0.5 e−βE4 , B =∑

i k
2
i b

2
i e−βEi + 0.5 e−βE3 + 0.5 e−βE4 , C = ∑

i k
2
i b

2
i e−βEi − 0.5 e−βE3 + 0.5 e−βE4 ,D =∑

i k
2
i e−βEi − 0.5 e−βE3 + 0.5 e−βE4 , where i = 1, 2, 5, 6. For ρ13, we have Ã = (

k2
1b

2
1 +

k2
5

)
e−βE1 +

(
k2

2b
2
2 + k2

6

)
e−βE2 + e−βE4 , B̃ = (

k2
1 + k2

5b
2
5

)
e−βE1 +

(
k2

2 + k2
6b

2
6

)
e−βE2 + e−βE3 , C̃ =(

k2
1b1 + k2

5b5
)

e−βE1 +
(
k2

2b2 + k2
6b6

)
e−βE2 . One can easily prove C12 = C13 = C23 = 0, which

means that any pairwise thermal entanglement is zero. However, it does not mean that the
system has no entanglement; the impurity can lead to entanglement of site i with the rest of
the other sites and global entanglement of the whole system. Note that at finite temperature,
all excited states have contributions to the thermal entanglement. The thermal equilibrium
state is a mixed state. The concurrence of two-qubit mixed state ρ is defined to be a minimum
over all possible pure-state decompositions of ρ [22]. For a given mixed state {pi, |ψi〉}, the
concurrences of different pure states of the mixed state may cancel each other [5]. These
lead to zero pairwise thermal entanglement. One can check that the pairwise entanglement,
tangle, residual entanglement and global entanglement of every excited state are not equal
to zero.
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4. Entanglement in the Ising model with two magnetic impurities

To show the entanglement properties caused by impurities clearly, let us further consider the
Ising ring with two magnetic impurities. The Hamiltonian is

H = −J
(
σx

1 σx
2 + σx

2 σx
3 + σx

3 σx
1

)
+ Bσz

1 + Bσz
3 . (7)

One can easily obtain the eigenvalues of system (7) as

E1 = E5 = J E2 = E6 = PJ + QJ − J/3

E3 = E7 = wPJ + w2QJ − J/3 E4 = E8 = w2PJ + wQJ − J/3
(8)

where P = (−q/2 + �1/2)1/3, Q = (−q/2 − �1/2)1/3,� = (q/2)2 + (p/3)3, q = [128 − 72
(B/J )2]/27, p = −[12(B/J )2 + 16]/3, w = (−1 +

√−3)/2. The corresponding eigenstates
are

|ψ1〉 = (|011〉 − |110〉)/
√

2 |ψ5〉 = (|100〉 − |001〉)/
√

2

|ψj 〉 = kj (|000〉 + bj |011〉 + aj |101〉 + bj |110〉)
|ψl〉 = kl(|111〉 + bl|100〉 + al|010〉 + bl|001〉)

(9)

where aj = [−(Ej + J )(Ej + 2B) + 2J 2]/[J (Ej − J )], bj = (Ej + 2B − J )/(Ej − J ),
al = [−(El + J )(El − 2B) + 2J 2]/[J (El − J )], bl = (El − 2B − J )/(El − J ), j = 2, 3, 4,

l = 6, 7, 8.
The ground state of system (7) is the linear combination of states |ψ3〉 and |ψ7〉 and is

twofold degenerate if J > 0. The thermal ground state has the probabilities of one half
occupying |ψ3〉 and one half occupying |ψ7〉. The pairwise entanglements at the thermal
ground state are

C12 = C23 = max{0, A,B} C13 = max{0, C,D}
where A = ∣∣k2

3b3 + k2
7b7

∣∣−[(
k2

3b
2
3 + k2

7a
2
7

)(
k2

3a
2
3 + k2

7b
2
7

)]1/2
, B = ∣∣k2

3a3b3 + k2
7a7b7

∣∣−[(
k2

3 +

k2
7b

2
7

)(
k2

3b
2
3 + k2

7

)]1/2
, C = ∣∣k2

3a3 + k2
7a7

∣∣ − ∣∣k2
3b

2
3 + k2

7b
2
7

∣∣, D = ∣∣k2
3b

2
3 + k2

7b
2
7

∣∣ − [(
k2

3 + k2
7a

2
7

)
(
k2

3a
2
3 + k2

7

)]1/2
. Let us consider two limit cases: (i) the ground state is |ψ3〉 and (ii) the ground

state is |ψ7〉. In the first limit case, the pairwise entanglements are

C12 = C23 = 2k2
3 ||a3b3| − |b3|| C13 = 2k2

3 |b2
3 − |a3||.

The entanglements between the ith site and the rest of the other sites are

C11̄ = C33̄ = 4k4
3

(
1 + b2

3

)(
a2

3 + b2
3

)
C22̄ = 8k4

3

(
1 + a2

3

)
b2

3.

The residual entanglement of the system is C123 = 16k4
3 |a3|b2

3 and the global entanglement of
the whole system is

Q(|ψ3〉) = 8
3k4

3

[
a2

3 + 2b2
3 + 2a2

3b
2
3 + b4

3

]
. (10)

The ground state entanglement versus magnetic impurities is shown in figure 2. In case (ii),
one can obtain the same formulae by changing a3 and b3 into a7 and b7, respectively. If J < 0,
the ground state is the linear combination of states |ψ2〉 and |ψ6〉. The entanglement properties
can be obtained similarly.

The pairwise entanglement between sites 1 and 2 is the same as that between sites 2 and 3
due to the symmetry. So we only consider the entanglement between sites 1 and 2, and
that between sites 1 and 3. After tedious calculation, the pairwise entanglements at finite
temperature are

C12 = 2

Z
max{0, |D| −

√
BE, |C| −

√
AF }

C13 = 2

Z
max{0, |D̃| − |B̃|, |C̃| −

√
ÃF̃ },

(11)
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Figure 2. The ground state entanglement in the Ising model with two magnetic impurities. One can
see that C123 = C213, which means that the residual entanglement is independent of permutations
of sites.

where A = 0.5 e−βE1 +
∑

i k
2
i e−βEi +

∑
j k2

j a
2
j e−βEj , B = 0.5 e−βE1 +

∑
i k

2
i b

2
i e−βEi +∑

j k2
j a

2
j e−βEj , C = ∑

l k
2
l albl e−βEl ,D = ∑

l k
2
l bl e−βEl , E = 0.5 e−βE1 +

∑
i k

2
i a

2
i e−βEi +∑

j k2
j b

2
j e−βEj , F = ∑

i k
2
i b

2
i e−βEi + 0.5 e−βE1 +

∑
j k2

j e−βEj , Ã = ∑
i k

2
i e−βEi +∑

j k2
j a

2
j e−βEj , B̃ = e−βE1 +

∑
l k

2
l b

2
l e−βEl , C̃ = −e−βE1 +

∑
l k

2
l b

2
l e−βEl , D̃ =∑

l k
2
l al e−βEl , F̃ = ∑

i k
2
i a

2
i e−βEi +

∑
j k2

j e−βEj , i = 2, 3, 4, j = 6, 7, 8 and l =
2, 3, 4, 6, 7, 8. The pairwise entanglement between sites 1 and 2 is zero, while the pairwise
entanglement between sites 1 and 3 is not equal to zero, which is shown in figure 3. We find
that there exists a critical Bcr(T ). There is no entanglement if B < Bcr(T ), which means that
the heat effect is dominant. The value of critical Bcr(T ) increases with increasing temperature.
If the temperature is low, this switch effect is not obvious.

5. Entanglement in the transverse Ising model

The Hamiltonian of the three-site Ising model with transverse fields is

H = −J
(
σx

1 σx
2 + σx

2 σx
3 + σx

3 σx
1

)
+ B

(
σ z

1 + σ z
2 + σ z

3

)
(12)

which also means that every site has a magnetic impurity. The eigenstates can be obtained
explicitly as

|ψ1〉 = (|110〉 − |011〉)/
√

2 |ψ2〉 = (|101〉 − |011〉)/
√

2

|ψ3〉 = (|100〉 − |001〉)/
√

2 |ψ4〉 = (|010〉 − |001〉)/
√

2

|ψ5,6〉 = k5,6(a5,6|111〉 + |001〉 + |010〉 + |100〉)
|ψ7,8〉 = k7,8(a7,8|000〉 + |011〉 + |101〉 + |110〉)

(13)

with the eigenvalues E1 = E2 = J + B,E3 = E4 = J − B,E5,6 = −J + B ∓
2[J 2 + JB + B2]1/2, E7,8 = −J − B ∓ 2[J 2 − JB + B2]1/2. Here a5,6 = [−J −
2B ± 2(J 2 + JB + B2)1/2]/J and a7,8 = [−J + 2B ± 2(J 2 − JB + B2)1/2]/J .

The ground state is |ψ7〉 no matter J > 0 or J < 0. The structure of the ground state |ψ7〉
of the transverse field Ising model changes dramatically as the parameter B is varied. When
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Figure 3. The concurrence C13 versus impurities and temperature in the Ising model with two
boundary impurities. Here J = 1.0. There exists a critical Bcr(T ) and there is no entanglement
if B < Bcr(T ), which means that the heat effect is dominant. The value of Bcr(T ) increases with
increasing temperature. The pairwise entanglement appears only if the magnitude of the impurity
is large enough.

Figure 4. The entanglement at ground state in the transverse Ising model. Here J = 1.0. There
is no entanglement if B = 0. However, if there exists an infinitesimal transverse field, the tangle
C11̄ (or E11̄), the residual entanglement C123 and the global entanglement Q(|ψ7〉) reach their
maxima immediately. Then, the tangle, residual entanglement and global entanglement decrease
with increasing transverse field, while the behaviour of concurrence is very different from that,
and concurrence reaches its maximum at the point B = 1. Therefore, different measures of
entanglement reach their maxima at different magnitudes of transverse field.

B/J approaches 0, the ground state becomes a product of spins pointing in the x direction, and
is not entangled. When B/J tends to infinity, the ground state approaches again a product of
spins pointing in the z direction, and is also not entangled. The pairwise entanglement at finite
B/J can be measured by concurrence as C12 = 2k2

7 |1 − |a7||. Due to the periodic boundary
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conditions, any pairwise entanglements of the system are equal. The entanglement of site 1
with the rest of the other sites is C11̄ = 8k4

7

(
a2

7 + 1
)
, and the residual entanglement of the system

is C123 = 16k4
7 |a7|. The global entanglement of the whole system reads Q(|ψ7〉) = C11̄ due

to the translation invariant. In order to analogize the different measures of entanglement, we
also calculate the von Neumann entropy, another measure of entanglement. The von Neumann
entropy of sites 1 and 2 can be obtained from the concurrence as

E12(C12) = h
([

1 +
√

1 − C2
12

]/
2
)

h(x) = −x log2 x − (1 − x) log2 (1 − x).

(14)

The von Neumann entropy calculated from the reduced density matrix ρ1 is employed to
measure the entanglement of states on the first site with that on the remaining sites,

E11̄ = −k2
7

(
a2

7 + 1
)

log2 k2
7

(
a2

7 + 1
) − 2k2

7 log2 2k2
7 . (15)

It exhibits the correlations between a local state and the other part of the system. From figure 4,
we find that the concurrence C12 has a maximum value at the point B = 1. Note that if the total
lattice number of the chain is more than 3, the maximum of concurrence will appear before
but near the point B = 1, while the tangle C11̄ is a monotonically decreasing function with
increasing B, whose behaviour is very different from that of the concurrence. It is argued that
the entanglement can be used to describe the quantum phase transitions and the entanglement
quantification may reach its maximum at the critical point [12]. If this argument is right, the
critical point of the quantum phase transitions should correspond to the maximum of total
entanglement because both of them describe the global properties of the system. Therefore,
if one uses the concurrence to measure the entanglement, the pairwise entanglement may not
arrive at its maximum at the critical point because it is not the total entanglement of the system.
Note that different measures of entanglement may reach their maxima at different values of
intrinsic parameters in the system.

The concurrence at finite T is C12 = 2 max{0, |D| − √
BE, |C| − √

AF }/Z where
A = e−βE3 +

∑
j k2

j e−βEj +
∑

l k
2
l a

2
l e−βEl , B = e−βE1 + 0.5 e−βE3 +

∑
j,l k

2
j,l e−βEj,l , C =

−0.5 e−βE1 +
∑

j k2
j e−βEj +

∑
l k

2
l e−βEl ,D = ∑

j,l k
2
j,laj,l e−βEj,l , E = ∑

0.5 e−βE1,3 +∑
j,l k

2
j,l e−βEj,l , F = 0.5 e−βE1 +

∑
j k2

j a
2
j e−βEj +

∑
l k

2
l e−βEl , j = 5, 6, l = 7, 8. The

behaviour of thermal pairwise entanglement is shown in figure 5.
Now, we can safely argue that at zero temperature, there is no entanglement if B = 0. If

there exists an impurity, the pairwise entanglement appears and the concurrence is not equal
to zero. At finite temperature, we find a switch effect of the entanglement. The heat effect
is dominant and there is no pairwise entanglement if the magnitude of the impurity is small.
The impurity effect is dominant and the pairwise entanglement appears only if the impurity is
large enough. The competition of temperature and impurities leads to a critical Bcr(T ). The
impurities can lead to pairwise entanglement only in the region of B > Bcr(T ). The value of
Bcr(T ) increases with increasing temperature. It is worth pointing out that all excited states
have contributions to the entanglement at finite temperature. The eigenstate of the system
at thermal equilibrium is a mixed state. The concurrence of the two-qubit mixed state ρ is
defined to be a minimum over all possible pure-state decompositions of mixed state. The
concurrence of different pure states of {pi, |ψi〉} may cancel and leads to the switch effect. In
the region of B < Bcr(T ), the mixed state pairwise thermal entanglement is zero, but one can
check that every excited state of thermal equilibrium has nonzero pairwise entanglement.
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Figure 5. The concurrence C12 versus impurities and temperature in the transverse Ising model.
Here J = 1.0. There exists a critical Bcr(T ) and there is no entanglement if B < Bcr(T ), which
means that the heat effect is dominant. The value of Bcr(T ) increases with increasing temperature.

6. Entanglement in the Ising model with two boundary impurities

In this section, we consider the three-site Ising model with open boundary conditions, which
also means that there are two magnetic impurities on the two boundaries. The impurities break
the translation invariant of the system. The Hamiltonian is

H = −J
(
σx

1 σx
2 + σx

2 σx
3

)
+ B1σ

z
1 + B3σ

z
3 . (16)

The eigenstates of system (16) are

|ψi〉 = ki(|000〉 + ai |011〉 + bi |101〉 + ci |110〉)
|ψj 〉 = kj (|111〉 + ãj |100〉 + b̃j |010〉 + c̃j |001〉) (17)

where ai = −(Ei − B1 + B3)(Ei + B1 + B3)/(2JEi), bi = (Ei + B1 + B3)/(Ei − B1 − B3),
ci = −(Ei + B1 + B3)(Ei + B1 − B3)/(2JEi), ãj = −2JEj/[(Ej − B1 + B3)(Ej + B1 + B3)],
b̃j = (Ej − B1 − B3)/(Ej + B1 + B3), c̃j = −2JEj/[(Ej + B1 + B3)(Ej + B1 − B3)], i =
1, . . . , 4, j = 5, . . . , 8, ki,j are the normalized coefficients and Ei,j are the corresponding
eigenvalues

E1,5 = −E2,6 = ∣∣√B2
1 + J 2 +

√
B2

3 + J 2
∣∣

E3,7 = −E4,8 = ∣∣√B2
1 + J 2 −

√
B2

3 + J 2
∣∣. (18)

The ground state is a linear combination of states |ψ2〉 and |ψ6〉. The thermal ground state has
the probabilities one half occupying |ψ2〉 and one half occupying |ψ6〉. All the concurrences
at the thermal ground state are zero. If the ground state is |ψ2〉, the pairwise entanglements
are

C12 = C23 = 2k2
2 ||a2b2| − |c2|| C13 = 0. (19)

We see that the pairwise entanglement between two boundaries is zero. This is because the
directions of boundary impurities are the same. The tangles between the ith site and the rest
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Figure 6. The ground state entanglement in the Ising model with two boundary impurities.
C12 = C23, C13 = 0, C11̄ = C33̄. There is no entanglement if B = 0. The tangle, residual
entanglement and global entanglement appear and reach their maxima immediately if there exist
infinitesimal boundary impurities and decrease with increasing magnitude of impurity. The
concurrences C12 and C23 reach their maxima at the point B = 1.0.

Figure 7. The concurrence C12 versus two boundary impurities at the ground state in the Ising
model. It is also the curve of concurrence C23 after exchanging B1 and B3 because the system is
unchanged after this operation. Here J = 1.0.

of the other sites are

C11̄ = C33̄ = 4k4
2

(
1 + a2

2

)(
b2

2 + c2
2

)
C22̄ = 4k4

2

(
1 + b2

2

)(
a2

2 + c2
2

)
. (20)

The residual entanglement is C123 = 16k4
2 |a2b2c2|. The global entanglement of the whole

system reads

Q(|ψ2〉) = 8
3k4

2

(
a2

2 + b2
2 + c2

2 + a2
2b

2
2 + b2

2c
2
2 + a2

2c
2
2

)
. (21)

The entanglement properties are shown in figure 6. The boundary impurities effect on the
concurrence C12 is shown in figure 7.
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Figure 8. The concurrence C12 versus impurity at the thermal ground state in the Ising model with
one free boundary. The concurrence arrives at its maximum at the critical point B1 = 1.0.

Any pairwise entanglement at finite temperature is zero. This is because the eigenstate
of the system at thermal equilibrium is a mixed state and the concurrences of different pure
states of the mixed state may cancel each other. One can check that the concurrence, tangle,
residual and global entanglement of every excited state are not equal to zero.

7. Entanglement in the Ising model with one free boundary

Now, we consider the three-site Ising model with two neighbour impurities using free boundary
conditions. The Hamiltonian is

H = −J
(
σx

1 σx
2 + σx

2 σx
3

)
+ B1σ

z
1 + B2σ

z
2 . (22)

Here we put one impurity in the bulk and one on the boundary, while the other boundary is
free. There is only one impurity in the bulk and two boundaries are free if B1 = 0. The
corresponding eigenstates of system (22) are

|ψi〉 = ki(|000〉 + ai |011〉 + bi |101〉 + ci |110〉)
|ψj 〉 = kj (|111〉 + ãj |100〉 + b̃j |010〉 + c̃j |001〉) (23)

where ai = −(Ei −B1 −B2)(Ei +B1 +B2)/(2J (Ei −B2)), bi = (Ei +B1 +B2)/(Ei −B1 +B2),
ci = −(Ei + B1 + B2)(Ei + B1 − B2)/(2J (Ei − B2)), ãj = −(Ej + B1 + B2)(Ej − B1 −
B2)/(2J (Ei + B2)), b̃j = (Ej − B1 − B2)/(Ej + B1 − B2), c̃j = (Ej − B1 − B2)(Ej − B1 +
B2)/(2J (Ei + B2)), i = 1, 2, 3, 4, j = 5, 6, 7, 8, ki,j are the normalized coefficients and Ei,j

are the corresponding eigenvalues

E1,5 = −E2,6 = [
B2

1 + B2
2 + 2J 2 + 2

√
B2

1B2
2 + B2

1J 2 + J 4
] 1

2

E3,7 = −E4,8 = [
B2

1 + B2
2 + 2J 2 − 2

√
B2

1B2
2 + B2

1J 2 + J 4
] 1

2 .

(24)

The ground state of the system is the linear combination of states |ψ2〉 and |ψ6〉. The
thermal ground state is mixed by |ψ2〉 and |ψ6〉 with equal probabilities and the density matrix
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Figure 9. The concurrence C12 versus temperature and impurity in the Ising model with one free
boundary. Here J = 1.0 and B2 = 1.02.

is

ρground = 1
2 |ψ2〉〈ψ2| + 1

2 |ψ6〉〈ψ6|. (25)

From the density matrix (25), we have C12 = ∣∣k2
2c2 + k2

6 c̃6

∣∣ − [(
k2

2a
2
2 + k2

6 b̃
2
6

)(
k2

2b
2
2 + k2

6 ã
2
6

)]1/2

and C13 = C23 = 0. The concurrence C12 versus boundary impurity is shown in figure 8.
The C12 arrives at its maximum at the critical point B1 = 1.0. The pairwise
entanglements at finite temperature are C12 = 2 max{0, |D| − √

BE, |C| − √
AF }/Z

and C13 = C23 = 0, where A = ∑
i k

2
i e−βEi +

∑
j k2

j c̃
2
j e−βEj , B = ∑

i k
2
i a

2
i e−βEi +∑

j k2
j b̃

2
j e−βEj , C = ∑

i k
2
i aibi e−βEi +

∑
j k2

j ãj b̃j e−βEj ,D = ∑
i k

2
i ci e−βEi +

∑
j k2

j c̃j

e−βEj , E = ∑
i k

2
i b

2
i e−βEi +

∑
j k2

j ã
2
j e−βEj , F = ∑

i k
2
i c

2
i e−βEi +

∑
j k2

j e−βEj , i =
1, 2, 3, 4, j = 5, 6, 7, 8. The concurrence C12 versus temperature and boundary field is
shown in figure 9. Note that the concurrences C13 and C23 are 0 both at the thermal ground
state and at the thermal equilibrium state.

8. Conclusion

In summary, we study the magnetic impurities effect on entanglement in the Ising model
with both periodic and open boundary conditions, and obtain analytic expressions for the
measures of entanglement. The ground state and excited states of the system possess
remarkable entanglement properties. The relations between pairwise entanglement and
magnetic impurities and temperature are obtained. We find that the entanglement properties of
the system are dependent on the location of impurities. Different pairs of sites have different
entanglement properties. The impurities and symmetry broken in the system can enhance
some pairwise entanglement. Therefore, if one wants to enhance the entanglement of some
pairs, good methods are doping with impurities or breaking the symmetry of the system.
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